Ghosts in Keldysh-Schwinger Formalism

Alina Czajka

Institute of Physics, Jan Kochanowski University, Kielce, Poland

in collaboration with St. Mrówczyński

based on: A. Czajka & St. Mrówczyński, Phys. Rev. D 89, 085035 (2014)

Outline

- 1. Motivation
- 2. Keldysh-Schwinger formalism
- 3. Green's functions of gluons
- 4. Generating functional
- 5. Slavnov-Taylor identities
- 6. Green's functions of ghosts
- 7. Application polarization tensor
- 8. Conclusions

Motivation

➤ QCD computations in covariant gauges are usually much simpler than those in physical ones like the Coulomb gauge.

➤ Covariant gauges require ghosts to compenasate unphysical degrees of freedom.

How to introduce ghosts in the Keldysh-Schwinger formalism?

What is the Green's function of free ghosts?

Keldysh-Schwinger formalism

Description of non-equilibrium many-body systems

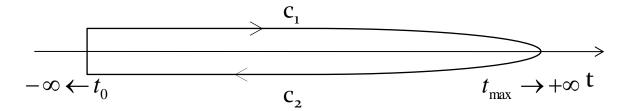
Contour Green function of gauge field

$$i\mathcal{D}_{ab}^{\mu\nu}(x,y) \stackrel{\text{def}}{=} \left\langle \widetilde{T} A_a^{\mu}(x) A_b^{\nu}(y) \right\rangle$$

$$\langle ... \rangle = \text{Tr}[\hat{\rho}(t_0)...]$$

 $oldsymbol{\widetilde{T}}$ - ordering along the contour

$$\widetilde{T}A(x)B(y) = \Theta(x_0, y_0)A(x)B(y) \pm \Theta(y_0, x_0)B(y)A(x)$$



Keldysh-Schwinger formalism

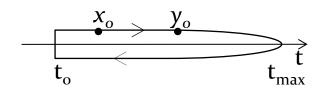
Contour Green's function includes 4 Green's functions with real time arguments:

$$\left(\mathcal{D}_{ab}^{\mu\nu}\right)^{\triangleright}(x,y) = \left\langle A_a^{\mu}(x) A_b^{\nu}(y) \right\rangle$$

$$\begin{array}{c|c}
 & x_o \\
\hline
 & t_o \\
\hline
 & y_o \\
\hline
 & t_{max}
\end{array}$$

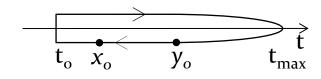
$$\begin{array}{c|c}
 & y_o \\
\hline
t_o & x_o \\
\end{array}$$

$$\left(\mathcal{D}_{ab}^{\mu\nu}\right)^{c}(x,y) = \left\langle T^{c} A_{a}^{\mu}(x) A_{b}^{\nu}(y) \right\rangle$$



Chronological time ordering

$$\left(\mathcal{D}_{ab}^{\mu\nu}\right)^{a}(x,y) = \left\langle T^{a} A_{a}^{\mu}(x) A_{b}^{\nu}(y) \right\rangle$$



Anti-chronological time ordering

Retarded, advanced & symmetric Green's functions

$$\mathcal{D}^+(x,y) = \Theta(x_0 - y_0) \Big(\mathcal{D}^>(x,y) - \mathcal{D}^<(x,y) \Big)$$

$$\mathcal{D}^{-}(x,y) = \Theta(y_0 - x_0) \Big(\mathcal{D}^{<}(x,y) - \mathcal{D}^{>}(x,y) \Big)$$

$$\mathcal{D}^{sym}(x,y) = \mathcal{D}^{>}(x,y) + \mathcal{D}^{<}(x,y)$$

Meaning of the functions

$$\mathcal{D}^{<,>}(x,y)$$

- phase-space density
- **>** mass-shell constraint
- > real particles

$$\mathcal{D}^{\pm}(x,y)$$

- > retarded & advanced propagator
- > no mass-shell constraint
- **>** virtual particles

Meaning of the functions

The Green's function $\mathcal{D}(x, y)$ are gauge dependent

Physical results obtained from Green's functions must be gauge independent

For example

The poles of $\mathcal{D}(x, y)$ - disperssion relations – are gauge independent

Green's functions of free gluon field

Feynman gauge $\alpha = 1$

$$D^{>}(p) = \frac{i\pi}{E_{p}} g_{\mu\nu} \delta^{ab} \left[\delta(E_{p} - p_{0}) [n_{g}(\mathbf{p}) + 1] + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right]$$

$$D^{<}(p) = \frac{i\pi}{E_{p}} g_{\mu\nu} \delta^{ab} \left[\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) [n_{g}(-\mathbf{p}) + 1] \right]$$

$$D^{c}(p) = -g_{\mu\nu}\delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0})n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0})n_{g}(-\mathbf{p}) \right) \right]$$

$$D^{a}(p) = g_{\mu\nu} \delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right) \right]$$

 $n_{g}(\mathbf{p})$ - gluon distribution function

Green's functions of free ghosts

$$\Delta^{>}(p)$$
 $\Delta^{<}(p)$
 $\Delta^{<}(p)$
 $\Delta^{c}(p)$
 $\Delta^{a}(p)$

How to get Green's function of free ghosts?

Ghost sector should be determined by the gauge symmetry of the theory!

$$A^{a}_{\mu} \rightarrow \left(A^{a}_{\mu}\right)^{U} = A^{a}_{\mu} + f^{abc}\omega^{b}A^{c}_{\mu} - \frac{1}{g}\partial_{\mu}\omega^{a}$$

gauge symmetry of the theory

Slavnov-Taylor identities

Generating functional

$$W_0[J,\chi,\chi^*] = N_0 \int_{BC} \mathcal{D}A \, \mathcal{D}C \, \mathcal{D}C^* e^{i\int_C d^4x \, \mathcal{L}_{\text{eff}}(x)}$$

boundary conditions:

the fields are fixed in $t = -\infty \pm i0^+$

Lagrangian:

$$\mathcal{L}_{\text{eff}}(x) = -\frac{1}{4} F_{a}^{\mu\nu} F_{\mu\nu}^{a} + \overline{\psi} (i\gamma_{\mu} D^{\mu} - m) \psi - \frac{1}{2\alpha} (\partial^{\mu} A_{\mu}^{a})^{2} - c_{a}^{*} (\partial^{\mu} \partial_{\mu} \delta_{ab} - g \partial^{\mu} f^{abc} A_{\mu}^{c}) c_{b} + J_{\mu}^{a} A_{a}^{\mu} + \chi_{a}^{*} c_{a} + \chi_{a} c_{a}^{*}$$

$$W[J, \chi, \chi^*] = N \int DA' \ Dc' \ Dc^{*'} DA'' Dc'' \ Dc^{*''}$$

$$\times \rho[A', c', c^{*'}| A'', c'', c^{*''}] W_0[J, \chi, \chi^*]$$

density matrix

all fields are on the contour

Generating functional

$$W[J, \chi, \chi^*] = N \int DA' Dc' Dc'' DA'' Dc'' Dc'''$$

$$\times \rho[A', c', c^{*'}|A'', c'', c^{*''}] W_0[J, \chi, \chi^*]$$

The full Green's function can be generated through

$$i\mathcal{D}_{\mu\nu}^{ab}(x,y) = (-i)^2 \frac{\delta^2}{\delta J_{\mu}^a(x)\delta J_{\nu}^b(y)} W[J,\chi,\chi^*]\Big|_{J=\chi=\chi^*=0}$$

density matrix $\rho[A',c',c^{*'}|A'',c'',c^{*''}]$ is not specified

the explicit form of the functional and the Green's function cannot be found

The functional provides various relations among Green's functions.

General Slavnov-Taylor identity

$$W[J,\chi,\chi^*] = N \int_{BC} \mathcal{D}A \, \Delta[A] e^{i \int_C d^4 x \, \mathcal{L}(x)}$$

analog of the Fadeev-Popov determinant

$$\Delta[A] \equiv \int_{BC} \mathcal{D}c \, \mathcal{D}c \, *e^{-i\int_{C} d^{4}x \left(-c_{a}^{*}(\partial^{\mu}\partial_{\mu}\delta_{ab} - g\partial^{\mu}f^{abc}A_{\mu}^{c})c_{b} + \chi_{a}^{*}c_{a} + \chi_{a}c_{a}^{*}\right)}$$

The invariance of $W[J, \chi, \chi^*]$ under the transformations

$$A_{\mu}^{a} \rightarrow \left(A_{\mu}^{a}\right)^{U} = A_{\mu}^{a} + f^{abc}\omega^{b}A_{\mu}^{c} - \frac{1}{g}\partial_{\mu}\omega^{a}$$

leads to

$$\left\{ i\partial_{(y)}^{\mu} \frac{\delta}{\delta J_{d}^{\mu}(y)} - \int_{C} d^{4}x J_{a}^{\mu}(x) \left(\partial_{\mu}^{(x)} \delta^{ab} + igf^{abc} \frac{\delta}{\delta J_{c}^{\mu}(x)} \right) M_{bd}^{-1} \left[\frac{1}{i} \frac{\delta}{\delta J} \middle| x, y \right] \right\} W[J, \chi, \chi^{*}] = 0$$

Slavnov-Taylor identity for gluon Green's function

$$\frac{\delta}{\delta J_{e}^{\nu}(z)} \left\{ i\partial_{(y)}^{\mu} \frac{\delta}{\delta J_{d}^{\mu}(y)} - \int_{C} d^{4}x J_{a}^{\mu}(x) \left(\partial_{\mu}^{(x)} \delta^{ab} + igf^{abc} \frac{\delta}{\delta J_{c}^{\mu}(x)} \right) M_{bd}^{-1} \left[\frac{1}{i} \frac{\delta}{\delta J} \middle| x, y \right] \right\} W[J, \chi, \chi^{*}] = 0$$

$$J = \chi = \chi^* = 0$$

$$-p^{\mu}\mathcal{D}^{ab}_{\mu\nu}(p) = p_{\nu}\Delta_{ab}(-p)$$

free ghosts Green's function

The longitudinal component of the gluon Green's function is free.

Ghost functions

$$-p^{\mu}D^{ab}_{\mu\nu}(p) = p_{\nu}\Delta_{ab}(-p)$$

$$\Delta^{\triangleright}(p) = -\frac{i\pi}{E_p} \delta^{ab} \left[\delta(E_p - p_0) [n_g(\mathbf{p}) + 1] + \delta(E_p + p_0) n_g(-\mathbf{p}) \right]$$

$$\Delta^{<}(p) = -\frac{i\pi}{E_{p}} \delta^{ab} \left[\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) [n_{g}(-\mathbf{p}) + 1] \right]$$

$$\Delta^{c}(p) = \delta^{ab} \left[\frac{1}{p^{2} + i0^{+}} - \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right) \right]$$

$$\Delta^{a}(p) = -\delta^{ab} \left[\frac{1}{p^{2} - i0^{+}} + \frac{i\pi}{E_{p}} \left(\delta(E_{p} - p_{0}) n_{g}(\mathbf{p}) + \delta(E_{p} + p_{0}) n_{g}(-\mathbf{p}) \right) \right]$$

 $n_g(\mathbf{p})$ - gluon distribution function

Application - polarization tensor

The poles of $\mathcal{D}(x, y)$ give disperssion relations of quasiparticles

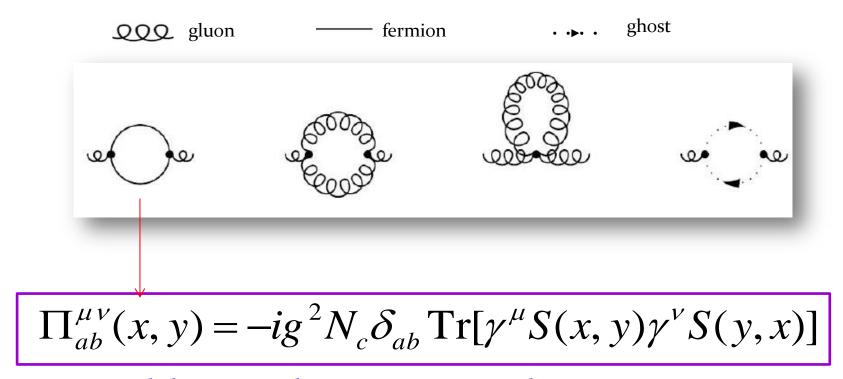
Dyson – Schwinger equation

$$\mathcal{D} = D - D\Pi \mathcal{D}$$

$$\mathcal{D}^{-1} = D^{-1} + \Pi$$

To get disperssion relations one needs the polarization tensor

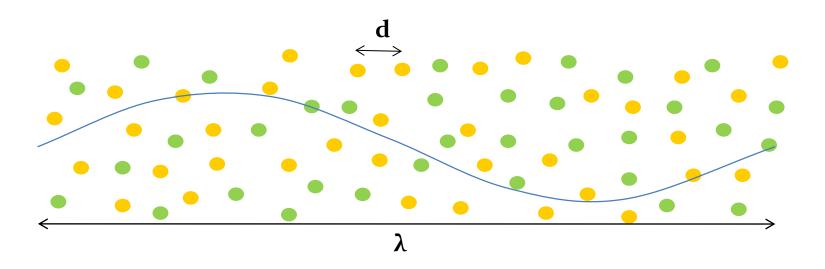
Contributions to polarization tensor



quark-loop contribution to <u>contour</u> polarization tensor

S(x,y) - fermion contour Green's function

Hard Loop Approximation



Wavelength of a quasi-particle is much bigger than inter-particle distance in the plasma:

$$\lambda >> d$$

$$k^{\mu} << p^{\mu}$$

Polarization tensor

$$\Pi_{ab}^{\mu\nu}(k) = g^2 \delta_{ab} \int \frac{d^3 p}{(2\pi)^3} \frac{f(\mathbf{p})}{E_p} \frac{k^2 p^{\mu} p^{\nu} - [p^{\mu} k^{\nu} + k^{\mu} p^{\nu} - g^{\mu\nu} (k \cdot p)](k \cdot p)}{(k \cdot p + i0^+)^2}$$

distribution function

$$f(\mathbf{p}) \equiv 2N_c n_g(\mathbf{p}) + n_q(\mathbf{p}) + \overline{n}_q(\mathbf{p})$$

(vacuum effect is subtracted)

> symmetric

$$\Pi^{\mu\nu}(k) = \Pi^{\nu\mu}(k)$$

> transversal

$$k_{\mu}\Pi^{\mu\nu}(k) = 0$$

Gauge independence!

Ghosts work properly!

Conclusions

- ➤ The generating functional of QCD in the Keldysh-Schwinger formalism was constructed.
- ➤ The general Slavnov-Taylor identity was derived.
- ➤ The ghost Green's function was expressed through the gluon one.
- ➤ The computed polarization tensor in the hard loop approximation is automatically transverse.
- QCD calculations in Keldysh-Schwinger formalism are possible in the Feynman gauge.