Selected Results on Diffraction at HERA

Grzegorz Gach

Various Faces of QCD 10 May 2014

HERA

2

NC Lepton-Proton Interaction

- $Q^2 = -(\mathbf{k} \mathbf{k}')^2$ virtuality of exchanged boson - $Q^2 \approx 0 \Rightarrow \text{PHP}$
 - $Q^2 > 1 \text{ GeV}^2 \Rightarrow \text{DIS}$
- $y = \frac{\mathbf{P} \cdot \mathbf{q}}{\mathbf{P} \cdot \mathbf{k}}$ inelasticity

•
$$W^2 = (\mathbf{P} + \mathbf{q})^2$$

photon-proton CME

• $s = (\mathbf{P} + \mathbf{k})^2$ lepton-proton CME

Diffraction

quantum numbers of:

- γ^* and X are equal
- p and p' are equal

- $x_{\mathbb{IP}}$ fraction of proton momentum carried by Pomeron
- $\beta = x/x_{\mathbb{P}}$ variable equivalent to the Bjorken x, but relative to the pomeron momentum

Outline

GRZEGORZ GACH

Inclusive Diffraction

Diffractive Selection

7

Factorisation

GRZEGORZ GACH

SELECTED RESULTS ON DIFFRACTION AT HERA 8

GRZEGORZ GACH

Inclusive Diffractive DIS at HERA EPJ C72 (2012) 2074

- DPDF calculations describe data at $Q^2 > 10 \text{ GeV}^2$
- the dipole model is better at low Q^2

Inclusive Diffractive DIS at HERA EPJ C72 (2012) 2074

$$F_2^{D(3)}(Q^2, \beta, x_{\mathbb{P}}) = f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{P}}(Q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(Q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{P}}(Q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(Q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{P}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(Q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{P}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(Q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta) + n_{\mathbb{R}} f_{\mathbb{R}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2, \beta)$$

$$= f_{\mathbb{P}/p}(x_{\mathbb{P}}) F_2^{\mathbb{R}}(q^2,$$

Exclusive Diffractive Dijets in DIS

• requires diffractive parton density functions • pure QCD calculations

- $d\sigma/d\phi$ described by the same function in both mechanisms
- two-gluon exchange mechanism predicts negative ${\cal A}$
- boson-gluon fusion mechanism predicts positive A

GRZEGORZ GACH

ZEUS

Diffractive Vector Meson Production

Diffractive Vector Meson Production

 J/ψ Photoproduction

Eur. Phys. J. C73 (2013) 2466

 J/ψ Photoproduction Eur. Phys. J. C73 (2013) 2466

Elastic J/ ψ photoproduction 10³ $[qu] (d h / f \leftrightarrow d \eta)$ H1 data HE H1 data LE H1(2005) Zeus(2002) and manager sugar fine E401, E516 LHCb(2013) 10² MNRT(LO) MNRT(NLO) 10 10² 10^{3} 10 W_{vp} [GeV]

- LO fits describe all (includining LHCb) data well
- NLO fits overestimate LHCb data

Upsilon (1S) Exclusive Photoproduction

$$b = 4.3^{+2.0}_{-1.3}(stat.)^{+0.5}_{-0.6}(syst.) \text{GeV}^{-2}$$

- first determination of $\Upsilon(1{\rm S})~|t|$ slope
- |t| slope measurement extended to $Q^2 + M_{VM}^2 \approx 90 \; {\rm GeV^2}$

Summary

- Inclusive Diffraction in DIS
 - H1 and ZEUS result combination provide unprecedented precision
 - measurements support proton vertex factorisation
- Exclusive Diffractive Dijet Production in DIS
 - the first measurement of the jet azimuthal angular distribution in $e^{\pm}p$ interactions
 - data favour 2-gluon exchange model
- Vector Meson Production
 - elastic and proton dissociative t slopes measured in J/Ψ production
 - the first measurement of Υ (1S) t slope

Thank You for Your Attention!