Low-x physics results from HERA

Lidia Goerlich

Institute of Nuclear Physics PAN, Cracow

- Electron-proton collider HERA at DESY / Hamburg
- QCD dynamics at low Bjorken-x
- QCD tests with the Hadronic Final State
- Forward jet production
- Diffractive dijets and QCD factorisation
- Summary

1st Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society

Various Faces of QCD

Jan Kochanowski University, Kielce, Poland, May 10-11, 2014

HERA

 $E_{p} = 920 - 460 \text{ GeV}$

E_e = 27.6 GeV

- HERA the world's only ep collider operated in 1992-2007 colliding electrons or positrons with protons
- two colliding beam experiments: H1 and ZEUS
- Nominal proton beam energy :

$$E_p = 820 / 920 \text{ GeV}$$

 $\sqrt{S} = 300 / 318 \text{ GeV}, \text{ (HERA-I phase)}$
 $E_p = 920 \text{ GeV}$
 $\sqrt{S} = 318 \text{ GeV}, \text{ (HERA-II phase)}$

Reduced proton beam energy :

 $E_{p} = 460 \text{ GeV}, \sqrt{S} = 225 \text{ GeV}$

 $E_p = 575 \text{ GeV}, \sqrt{S} = 250 \text{ GeV}$

Low energy data \rightarrow measurements of the longitudinal proton structure functions F_L and $F_L{}^D$ 2

Deep inelastic scattering at HERA

 \sqrt{s} : e-p centre-of mass energy

W : invariant mass of the hadronic final state (HFS)

Standard DIS variables :

- **Q**² |virtuality| of the exchanged boson
- X the Bjorken variable, fraction of the proton momentum carried by the struck quark in the Quark Parton Model
 - inelasticity, fraction of the lepton energy transfered in the proton rest frame

 $\textbf{ZEUS ep} \rightarrow \textbf{eX}$

γ

Q² ≈ xys

Precise measurement of the scattered electron (E scale at 1%) and the HFS (E, scale at 1-4%)

Measurements of the Hadronic Final State

. . .

Measurements of the Hadronic Final State in DIS are complementary to inclusive studies (structure of the proton, parton distribution functions PDF ...)

HFS : the full final state after removal of the scattered beam lepton (and any electroweak radiation associated with it)

boson-gluon fusion

- Information on the gluon density in the proton
- Determination of α_s
- Mechanisms of hadroproduction
- Search for effects of parton dynamics beyond the standard DGLAP parton evolution

QCD dynamics at low Bjorken-x

- HERA : DIS at low Bjorken-x down to 10⁻⁵ \rightarrow large γ^*p centre-of-mass-energy ($W_{\gamma^*p} \approx Q^2 / x$)
- enhanced phase space for gluon cascades exchanged between the proton and the photon
- pQCD multiparton emissions described only with approximations :

DGLAP

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution Assumes strong ordering of parton k_T

Resums terms ~ ($\alpha_{s} \ln Q^{2}$)ⁿ

```
BFKL
```

Balitsky-Fadin-Kuraev-Lipatov evolution No ordering in k_T , strong ordering in x_i Transition from DGLAP to BFKL scheme expected at low x Resums terms ~ $(\alpha_S \ln(1/x))^n$

CCFM

Ciafaloni-Catani-Fiorani-Marchesini evolution Emitted partons are ordered in angles

Reproduces DGLAP at large x and BFKL at $x \rightarrow 0$

QCD dynamics at low Bjorken-x

- Search at HERA for effects of parton dynamics beyond the standard DGLAP approach
- Define observables / phase space regions sensitive to low x effects
- Large parton densities at low x → phenomena of parton saturation and non-linear evolution may become important
- Strong rise of the proton structure function $F_2(x, Q^2)$ with decreasing x
- well described by NLO DGLAP over a large range of Q²
- F₂ measurement is too inclusive to discriminate between different QCD evolution schemes

The first F₂ measurements from HERA in 1992

Hadronic final states - reflect kinematics, structure of gluon emissions

(forward jets / particles, inclusive jets, multijet production, azimuthal correlation in dijet events, tranverse energy flow, p_T distribution of hadrons)

Low x phenomenology : Monte Carlo models with different QCD dynamics

RAPGAP - DGLAP

LO QCD matrix elements + HO modelled by leading log parton showers

direct photon

Single DGLAP ladder with strong k_T ordering

 $2 k_{T}$ - ordered cascades initiated from the proton and the photon

DJANGOH Colour Dipole Model

CDM: QCD radiation from the colour dipole formed by the struck quark and the proton remnant.

Chain of independently radiating dipoles formed by the emitted gluons.

BFKL- like Monte Carlo : random walk in k_T

CASCADE - CCFM

Off-shell QCD ME + parton emissions based on the CCFM equation

Angular ordering of parton emissions Input : unintegrated gluon densities (uPDF)

Forward jets in DIS

Mueller – Navelet jets in DIS (1990) :

High transverse momentum and high energy jets produced close to the proton remnant direction (forward region in LAB)

Suppress standard DGLAP evolution in Q² :

 $p_{T,jet}^2 \approx Q^2$

Enhance BFKL evolution in x :

 $\mathbf{x}_{fwdjet} = \mathbf{E}_{fwdjet} / \mathbf{E}_{p} >> \mathbf{x}_{Bj}$

DIS event at low Q²

Forward jet production at low x-Bjorken in DIS

(parameteris. of uPDF, missing $g \rightarrow qq$ terms ?)

9

Azimuthal angle difference $\Delta \Phi$ between the scattered positron and the forward jet may be sensitive to BFKL dynamics

- Quark Parton Model
 - $e + q \rightarrow e + q$

simple two-body kinematics $\Delta \phi = \phi_{el} - \phi_{fwdjet} = \pi$

 Inclusion of higher order processes decorrelates the jet from the positron

H1 experiment, Eur. Phys. J. C72 (2012) 1910

DIS selection	Jets reconstructed in the Breit frame	η = - In tan(θ/2)
	and boosted to LAB, all cuts in LAB	θ with respect to proton
$5 < Q^2 < 85 GeV^2$	p _{T, fwdjet} > 6 GeV, 1.73 < η _{fwdjet} < 2.79	beam direction
0.0001 < x < 0.004	$x_{fwdjet} = E_{fwdjet} / E_{p} > 0.035, 0.5 < p_{T,fwdjet}^{2} / Q^{2} < 6.0$)

$Y = In(x_{fwdjet} / x)$ rapidity distance between the most forward jet and the scattered positron

Eur. Phys. J. C72 (2012) 1910

At higher Y correspondig to lower x the forward jet is more decorrelated from the scattered positron

$$R = \left(\frac{1}{\sigma^{\rm MC}} \frac{d\sigma^{\rm MC}}{d\Delta\phi}\right) / \left(\frac{1}{\sigma^{\rm data}} \frac{d\sigma^{\rm data}}{d\Delta\phi}\right)$$

11

Forward jet azimuthal correlations

Comparison to NLO $(O(\alpha_s^2))$ predictions

EPJ C72 (2012) 1910

Forward jets at HERA :

- evidence for novel (BFKL-like) parton cascade dynamics
- not yet clear to which extent these low-x effects can be explained through higher order DGLAP calculations

NLO predictions

- shape of ∆ ∉ distributions described, but central value too low
- large scale uncertainty

 (of up to 50%)
 indicates importance of
 higher orders

Dijet production at parton level in DIS at NLO(α_s^2)

Surprise of HERA : ~10% of DIS events at HERA have no activity in the forward direction (Large Rapidity Gap events)

 \rightarrow exchange of a colourless object with vacuum quantum numbers, called Pomeron (IP)

Diffraction at HERA – low Bjorken-x phenomenon

Additional variables for DDIS :

- **X_{IP}** proton momentum fraction carried by IP
- **β** IP-momentum fraction carried by struck quark

 $\mathbf{x} = \mathbf{x}_{\mathsf{IP}} \boldsymbol{\beta}$

squared 4-momentum transfer at proton vertex

 $\Delta \eta \sim \ln(W^2 / M_X^2)$ $\eta = -\ln [\tan (\theta/2)]$

Measurements of the hadronic final states

Measurements of the HFS in diffractive DIS are complementary to inclusive studies

- Tests of QCD (inspired) models of diffraction
- Probe partonic structure of diffractive exchange
 - Diffractive dijets direct sensitivity to the gluon component of the Pomeron
- Search for physics beyond DGLAP parton evolution

...

Selection of diffractive events

ZEUS Leading Proton Spectrometer

• Proton spectrometers:

- detection of elastically scattered protons
- low geometrical acceptance \rightarrow less statistics
- direct measurement of t, x_{IP}
- high x_{IP} accessible
- Large Rapidity Gap:
 - selection of LRG adjacent to outgoing (untagged) proton
 - high acceptance \rightarrow more statistics
 - integration over |t| < 1 GeV²
 - background from proton dissociation into low mass resonances \mathbf{N}^{*}
- The 2 methods have different kinematical coverage, very different systematics ¹⁵

Infinite proton momentum frame : diffractive structure function approach

QCD hard scattering collinear factorisation (proven by Collins 1998):

$$d\sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \Sigma f_i^D(\beta, Q^2, x_{IP}, t) \otimes d\sigma^{ei}(\beta, Q^2)$$

 $f_i^{\,\text{D}}$ – diffractive parton density functions (DPDFs), DGLAP evolution in Q² σ^{ei} – partonic cross sections, same as in inclusive DIS

Proton vertex factorisation : separate (x_{IP}, t) from (β, Q^2) dependences (Ingelman&Schlein, 1985)

$$f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot F_{i}^{IP}(\beta, Q^{2})$$

No QCD basis, consistent with experimental data

Pomeron flux | IP structure function

Diffractive exchange as the Pomeron with a partonic structure ¹⁶

Test of QCD factorisation in diffractive DIS

• Diffractive dijets in DIS

- NLO QCD + ZEUS DPDF SJ remarkably good description of the dijet data
- QCD factorisation holds
- precision limited by theory scale uncertainty

Nucl. Phys. B831 (2010) 1

Dijets in diffractive DIS with a leading proton

- 2 topologies:
- two central jets
- one central + one forward jet search for physics beyond DGLAP

DPDF + NLO QCD works well : QCD factorisation holds in DIS regime No sign for deviations from DGLAP

Eur. Phys. J. C72 (2012) 1970

Test of QCD factorisation in diffractive photoproduction

Tevatron vs HERA

DPDFs from HERA applied to diffractive pp scattering at the Tevatron

- predictions for diffractive dijets exceed the data by a factor ~10
- breaking of QCD factorisation due to multiple scaterring in the presence of beam remnants → test of QCD factorisation in diffractive dijet photoproduction at HERA

ZEUS data on diffractive dijet photoproduction consistent with no suppression (Nucl. Phys. B831 (2010) 1)

Diffractive dijets in DIS and photoproduction at HERA

Measurement of proton-tagged diffractive dijets in DIS and photoproductionTest of QCD collinear factorisationH1@DIS2014

The cross section double ratio of data to NLO prediction for photoproduction and DIS :

$$\frac{(\text{DATA/NLO})_{\gamma p}}{(\text{DATA/NLO})_{\text{DIS}}} = 0.55 \pm 0.10 \text{ (data)} \pm 0.02 \text{ (theor.)}$$

- Confirmation of the previous H1 measurement based on large rapidity gap method
- Suppression factor in photoproduction ~0.55
- No dependence of supression factor on E_T of the leading jet

Summary

 Search for effects beyond the standard DGLAP approximation in low-x hadronic final state at HERA

Forward jet / particle production in DIS and diffractive DIS \rightarrow 17 years of precise measurements by H1 and ZEUS

- Measured cross sections much larger than lowest order DGLAP predictions
- Preference for models with QCD evolution non-ordered in transverse momentum observed, however no unequivocal evidence for non-DGLAP dynamics has been found

Summary

 Search for effects beyond the standard DGLAP approximation in low-x hadronic final state at HERA

Forward jet / particle production in DIS and diffractive DIS \rightarrow 17 years of precise measurements by H1 and ZEUS

- Measured cross sections much larger than lowest order DGLAP predictions
- Preference for models with QCD evolution non-ordered in transverse momentum observed, however no unequivocal evidence for non-DGLAP dynamics has been found

- ► The data are in general more precise than NLO QCD predictions → challenge for QCD
- MC models matching NLO QCD calculations to parton showers would help to interpret measurements of the HFS at HERA
- NLL BFKL (NLL BFKL kernel & NLO impact factors) calculation with Brodsky-Lepage-Mackenzie renormalisation scale fixing describes nicely Mueller-Navelet dijet decorrelation at LHC

No such calculations for azimuthal decorrelation of forward jets in DIS

backup

H1 data : Eur. Phys. J. C46 (2006)27

LO DGLAP (RG-DIR) below the data

CDM model and DGLAP resolved photon model (RG-DIR+RES) closest to the data, however the data are still below predictions at low x

BFKL calulations Kepka, Royon, Marquet & Peschanski Phys. Lett. B665 (2007) 236

NLO DGLAP below the data at low x

Difference between LL-BFKL and NLL-BFKL (NLL BFKL kernel + free normalisation parameter) is very small

Forward jet production at NLO BFKL

- S. Vera and F. Schwennsen, Phys. Rev. D77 (2008) 014001
- BFKL kernel at NLO accuracy, jet vertex & photon impact factor using LO approximation

 $\Delta \phi = \phi_{el} - \phi_{fwdjet}$ Y = In(x_{jet} / x_{BJ}) – evolution length in BFKL formalism

- The forward jet is more decorrelated from the scattered lepton for larger rapidity difference Y (center of mass energy)
- The azimuthal angle correlations increase when HO corrections are included for a fixed value of Y

- Preliminary CMS data at \sqrt{s} = 7 TeV
- P. Van Mechelen @ DIS2014 Conference in Warsaw

NLL calculation by Szymanowski, Wallon, Ducloué

- NLL BFKL kernel
- NLO impact factors
- Brodsky-Lepage-Mackenzie procedure to fix scale for a_s

this implementation of BFKL describes data nicely!

Diffractive parton density functions

- Diffractive PDFs obtained through NLO DGLAP QCD fit to data
 - inclusive DDIS cross section $\rightarrow\,$ diffractive gluon density weakly constrained at high z_{IP}
 - combined fit to diffractive inclusive and dijet cross sections \rightarrow comparable precision of quark and gluon densities for all $z_{\rm IP}$

(H1 2007 Jets DPDF, ZEUS DPDF SJ)

z_{IP}= momentum fraction parton / IP

Diffractive final states

Resolved Pomeron model (Ingelman & Schlein) based on QCD and proton vertex factorisation.

(RAPGAP generator, IP + Reggeon trajectories, DPDF H1 2006 Fit B)

2 Gluon Pomeron model (J. Bartels et al.)

Interaction of IP modeled as colourless pair of gluons with qq or qqg configurations emerging from the photon.

(RAPGAP, unintegrated PDF – set A0)

Soft Colour Interaction (SCI) (Edin, Ingelman & Rathsman)

Non-diffractive DIS with subsequent colour rearrangement between the partons in the final state.

Suppression of long strings (SCI + GAL)

(LEPTO generator, PDF CTEQ6L)