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sigma meson: f0(500), former σ

• What is it? (basic)

• Why we are interested in?

• How we analyze it?

• What it really can be?



f0(500) or σ: What is it?

• scalar-isoscalar meson i.e. JPC IG: 0++0+,

• lightest and widest: mass and width ≈ 500 MeV,

• hadronic decay channel: 100% ππ,

• dramatic history:

• until 1976 called ε or σ,
• disappeared from Particle Data Tables between 1978 and 1992,
• since 1994: f0(400− 1200),
• in years 2002-2010: f0(600),
• now (since 2012): f0(500)

• Renaissance of the sigma meson:

Mσ = Re(Eσ), Γσ = −2× Im(Eσ)
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Why we are interested in?

• because it is a scalar-isoscalar meson and can be the lowest glueball state or
mixture of qq̄, qqq̄q̄ and gg,

• quite interesting neighborhood: f0(980)− K K̄ state?, f0(1370) - ?, f0(1500) - the
lowest lattice gg meson,

• σ completely dominates the ππ threshold region,

• determines li constants needed in analyses of qq̄ condensate,

• crucial for FSI in e.g. heavy meson decays −→ CP violation, CKM matrix
elements,

• difficult to study



Decomposition of the S0-wave amplitude

1 + 1′ −→ f0(500)
2 + 2′ −→ f0(980)
3 + 3′ −→ f0(1400)
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Why we are interested in?

• because it is a scalar-isoscalar meson and can be the lowest glueball state or
mixture of qq̄, qqq̄q̄ and gg,

• quite interesting neighborhood: f0(980)− K K̄ state?, f0(1370) - ?, f0(1500) - the
lowest lattice gg meson,

• σ completely dominates the ππ threshold region,

• determines li constants needed in analyses of qq̄ condensate,

• crucial for FSI in e.g. heavy meson decays −→ CP violation, CKM matrix
elements,

• difficult to study



Measurement of D0 − D̄0 Mixing Parameters in
D0 → Ksπ

+π− Decays

events in the Q sideband 3 MeV< jQ� 5:9 MeVj<
14:1 MeV.

For the combinatorial background, P cmb is the product

of Dalitz plot and decay-time PDFs. The latter is parame-

trized as the sum of a delta function and an exponential

function convolved with a Gaussian resolution function.

The timing and Dalitz PDF parameters are obtained from

fitting events in the mass sideband 30 MeV=c2 <

jmK0
S
�� �mD0 j< 55 MeV=c2.

The likelihood function for �D0 decays, �L, has the same

form as L, with M and �M (appearing in P sig and P rnd)

interchanged. To determine x and y, we maximize the sum

lnL� ln �L. Table I lists the results from two separate fits.

In the first fit we assume CP is conserved, i.e., a � �a,� �
��, and p=q � 1. We fit all events in the signal region,

where the free parameters are x, y, �D0 , the timing resolu-

tion parameters of the signal, and the Dalitz-plot resonance

parameters ar�NR� and�r�NR�. The fit gives �D0 � �409:9�

1:0� fs, which is consistent with the world average [11].
The results for ar and �r for the 18 quasi-two-body

resonances used (following the same model as in

Ref. [6]) and the NR contribution are listed in Table II.

The Dalitz plot and its projections, along with projections

of the fit result, are shown in Fig. 2. We estimate the

goodness-of-fit of the Dalitz plot through a two-

dimensional �2 test [6] and obtain �2=�d:o:f:� � 2:1: for
3653� 40 d:o:f:. We find that the main features of the
Dalitz plot are well reproduced, with some significant but

numerically small discrepancies at peaks and dips of the

distribution in the very high m2
� region. The decay-time

distribution for all events, and the ratio of decay-time

distribution for events in the K��892�� and K��892��

regions, are shown in Fig. 3. The events in the K��892��

region have the largest sensitivity to the mixing parameters

x and y.
For the second fit, we allow forCPV. This introduces the

additional free parameters jp=qj, arg�p=q�, �ar�NR� and
��r�NR�. The fit gives two solutions: if fx; y; arg�p=q�g is a

solution, then f�x;�y; arg�p=q� � �g is an equally good

solution. From the fit to data, we find that the Dalitz plot

parameters are consistent for theD0 and �D0 samples; hence

we observe no evidence for direct CPV. Results for jp=qj
and arg�p=q�, parameterizing CPV in mixing and interfer-
ence between mixed and unmixed amplitudes, respec-

tively, are also found to be consistent with CP

TABLE I. Fit results and 95% C.L. intervals for x and y,
including systematic uncertainties. The errors are statistical,

experimental systematic, and decay-model systematic, respec-

tively. For the CPV-allowed case, there is another solution as
described in the text.

Fit case Parameter Fit result 95% C.L. interval

No x�%� 0:80� 0:29�0:09�0:10
�0:07�0:14 (0.0, 1.6)

CPV y�%� 0:33� 0:24�0:08�0:06
�0:12�0:08 (� 0:34, 0.96)

CPV x�%� 0:81� 0:30�0:10�0:09
�0:07�0:16 jxj< 1:6

y�%� 0:37� 0:25�0:07�0:07
�0:13�0:08 jyj< 1:04

jq=pj 0:86�0:30�0:06
�0:29�0:03 � 0:08 � � �

arg�q=p���� �14�16�5�2
�18�3�4 � � �

TABLE II. Fit results for Dalitz-plot parameters. The errors

are statistical only.

Resonance Amplitude Phase (deg) Fit fraction

K��892�� 1:629� 0:006 134:3� 0:3 0.6227

K�
0�1430�

� 2:12� 0:02 �0:9� 0:8 0.0724

K�
2�1430�

� 0:87� 0:02 �47:3� 1:2 0.0133

K��1410�� 0:65� 0:03 111� 4 0.0048

K��1680�� 0:60� 0:25 147� 29 0.0002

K��892�� 0:152� 0:003 �37:5� 1:3 0.0054

K�
0�1430�

� 0:541� 0:019 91:8� 2:1 0.0047

K�
2�1430�

� 0:276� 0:013 �106� 3 0.0013

K��1410�� 0:33� 0:02 �102� 4 0.0013

K��1680�� 0:73� 0:16 103� 11 0.0004

��770� 1 (fixed) 0 (fixed) 0.2111

!�782� 0:0380� 0:0007 115:1� 1:1 0.0063

f0�980� 0:380� 0:004 �147:1� 1:1 0.0452

f0�1370� 1:46� 0:05 98:6� 1:8 0.0162

f2�1270� 1:43� 0:02 �13:6� 1:2 0.0180

��1450� 0:72� 0:04 41� 7 0.0024

�1 1:39� 0:02 �146:6� 0:9 0.0914

�2 0:267� 0:013 �157� 3 0.0088

NR 2:36� 0:07 155� 2 0.0615
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FIG. 2 (color online). Dalitz-plot distribution and the projec-

tions for data (points with error bars) and the fit result (curve).

Here, m2
� corresponds to m2�K0

S�
�� for D0 decays and to

m2�K0
S�

�� for �D0 decays.
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Why we are interested in?

• because it is a scalar-isoscalar meson and can be the lowest glueball state or
mixture of qq̄, qqq̄q̄ and gg,

• quite interesting neighborhood: f0(980)− K K̄ state?, f0(1370) - ?, f0(1500) - the
lowest lattice gg meson,

• σ completely dominates the ππ threshold region,

• determines li constants needed in analyses of qq̄ condensate,

• crucial for FSI in e.g. heavy meson decays −→ CP violation, CKM matrix
elements,

• difficult to study



ππ S0-wave phase shifts and inelasticities



Puzzling S0 wave ππ cross section



Puzzling S0 wave ππ cross section



’70
GKPY dispersion equations with imposed
crossing symmetry condition

Madrid-Kraków group 2005-2011
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’70−→ 2011
GKPY dispersion equations with imposed
crossing symmetry condition

Madrid-Kraków group 2005-2011



GKPY equations and poles of the ππ amplitudes
partial waves: JI

experiment + theory (GKPY)

∞∫

4m2
π



GKPY equations and poles of the ππ amplitudes
partial waves: JI

experiment + theory (GKPY)

∞∫

4m2
π



GKPY equations and poles of the ππ amplitudes
partial waves: JI

experiment + theory (GKPY)

∞∫

4m2
π



GKPY equations:

Re t I(OUT )
` (s) =

2∑
I′=0

CII′ t ′(IN)
0 (4m2

π) +
2∑

I′=0

4∑
`′=0

−
∞∫

4m2
π

ds′K II′
``′ (s, s′) Im t I′(IN)

`′ (s′)

Re t I(OUT )
` (s) = Re t I(IN)

` (s)

and poles of the ππ amplitudes:
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and poles of the ππ amplitudes:



We had to be: well equipped ...



We had to check everything ....



.. and sometimes we were without any idea ....



sometimes we were misled ....



anyway we had to work very hard and finally were very
tired ....



M = Re(Epole), Γ = −2× Im(Epole)



Before 2012

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) and 2009 partial update for the 2010 edition (URL: http://pdg.lbl.gov)

f0(600)
or σ

IG (JPC ) = 0+(0 + +)

A REVIEW GOES HERE – Check our WWW List of Reviews

f0(600) T-MATRIX POLE
√

sf0(600) T-MATRIX POLE
√

sf0(600) T-MATRIX POLE
√

sf0(600) T-MATRIX POLE
√

s

Note that Γ ≈ 2 Im(
√

spole).

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE(400–1200)−i(250–500) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •
(455 ± 6+31

−13)−i(278 ± 6+34
−43) 1 CAPRINI 08 RVUE Compilation

(463 ± 6+31
−17)−i(259 ± 6+33

−34) 2 CAPRINI 08 RVUE Compilation

(552+ 84
−106)−i(232+81

−72) 3 ABLIKIM 07A BES2 ψ(2S) → π+π− J/ψ

(466 ± 18)−i(223 ± 28) 4 BONVICINI 07 CLEO D+ → π−π+π+

(484 ± 17)−i(255 ± 10) GARCIA-MAR...07 RVUE Ke4

(441+16
− 8)−i(272+ 9

−12.5) 5 CAPRINI 06 RVUE ππ → ππ

(470 ± 50)−i(285 ± 25) 6 ZHOU 05 RVUE

(541 ± 39)−i(252 ± 42) 7 ABLIKIM 04A BES2 J/ψ → ωπ+π−
(528 ± 32)−i(207 ± 23) 8 GALLEGOS 04 RVUE Compilation

(440 ± 8)−i(212 ± 15) 9 PELAEZ 04A RVUE ππ → ππ

(533 ± 25)−i(247 ± 25) 10 BUGG 03 RVUE

532 − i272 BLACK 01 RVUE π0π0 → π0π0

(470 ± 30)−i(295 ± 20) 5 COLANGELO 01 RVUE ππ → ππ

(535+48
−36)−i(155+76

−53) 11 ISHIDA 01 Υ(3S) → Υ ππ

610 ± 14 − i620 ± 26 12 SUROVTSEV 01 RVUE ππ → ππ, K K

(558+34
−27)−i(196+32

−41) ISHIDA 00B pp → π0π0π0

445 − i235 HANNAH 99 RVUE π scalar form factor

(523 ± 12)−i(259 ± 7) KAMINSKI 99 RVUE ππ → ππ, K K , σσ

442 − i 227 OLLER 99 RVUE ππ → ππ, K K

469 − i203 OLLER 99B RVUE ππ → ππ, K K

445 − i221 OLLER 99C RVUE ππ → ππ, K K , ηη

(1530+ 90
−250)−i(560 ± 40) ANISOVICH 98B RVUE Compilation

420 − i 212 LOCHER 98 RVUE ππ → ππ , K K

(602 ± 26)−i(196 ± 27) 13 ISHIDA 97 ππ → ππ

(537 ± 20)−i(250 ± 17) 14 KAMINSKI 97B RVUE ππ → ππ, K K , 4π

470 − i250 15,16 TORNQVIST 96 RVUE ππ → ππ, K K , K π,
ηπ

∼ (1100 − i300) AMSLER 95B CBAR pp → 3π0

400 − i500 16,17 AMSLER 95D CBAR pp → 3π0

1100 − i137 16,18 AMSLER 95D CBAR pp → 3π0

387 − i305 16,19 JANSSEN 95 RVUE ππ → ππ, K K

525 − i269 20 ACHASOV 94 RVUE ππ → ππ

(506 ± 10)−i(247 ± 3) KAMINSKI 94 RVUE ππ → ππ, K K

370 − i356 21 ZOU 94B RVUE ππ → ππ, K K

HTTP://PDG.LBL.GOV Page 1 Created: 7/30/2009 12:19

Since year 2012

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

f0(500) or σ

was f0(600)
IG (JPC ) = 0+(0 + +)

A REVIEW GOES HERE – Check our WWW List of Reviews

f0(500) T-MATRIX POLE
√
sf0(500) T-MATRIX POLE

√
sf0(500) T-MATRIX POLE

√
sf0(500) T-MATRIX POLE

√
s

Note that Γ ≈ 2 Im(
√
spole).

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •
(440 ± 10)−i(238 ± 10) 1 ALBALADEJO 12 RVUE Compilation

(445 ± 25)−i(278+22
−18)

2,3 GARCIA-MAR...11 RVUE Compilation

(457+14
−13)−i(279+11

− 7)
2,4 GARCIA-MAR...11 RVUE Compilation

(442+5
−8)−i(274+6

−5)
5 MOUSSALLAM11 RVUE Compilation

(452 ± 13)−i(259 ± 16) 6 MENNESSIER 10 RVUE Compilation

(448 ± 43)−i(266 ± 43) 7 MENNESSIER 10 RVUE Compilation

(455± 6+31
−13)−i(278 ± 6+34

−43)
8 CAPRINI 08 RVUE Compilation

(463± 6+31
−17)−i(259 ± 6+33

−34)
9 CAPRINI 08 RVUE Compilation

(552+ 84
−106)−i(232+81

−72)
10 ABLIKIM 07A BES2 ψ(2S) → π+π− J/ψ

(466 ± 18)−i(223 ± 28) 11 BONVICINI 07 CLEO D+ → π−π+π+

(472 ± 30)−i(271 ± 30) 12 BUGG 07A RVUE Compilation

(484 ± 17)−i(255 ± 10) GARCIA-MAR...07 RVUE Compilation

(430)−i(325) 13 ANISOVICH 06 RVUE Compilation

(441+16
− 8)−i(272+ 9

−12.5)
14 CAPRINI 06 RVUE ππ → ππ

(470 ± 50)−i(285 ± 25) 15 ZHOU 05 RVUE

(541 ± 39)−i(252 ± 42) 16 ABLIKIM 04A BES2 J/ψ → ωπ+π−
(528 ± 32)−i(207 ± 23) 17 GALLEGOS 04 RVUE Compilation

(440 ± 8)−i(212 ± 15) 18 PELAEZ 04A RVUE ππ → ππ

(533 ± 25)−i(249 ± 25) 19 BUGG 03 RVUE

517− i240 BLACK 01 RVUE π0π0 → π0π0

(470 ± 30)−i(295 ± 20) 14 COLANGELO 01 RVUE ππ → ππ

(535+48
−36)−i(155+76

−53)
20 ISHIDA 01 Υ(3S) → Υ ππ

610 ± 14− i620 ± 26 21 SUROVTSEV 01 RVUE ππ → ππ, K K

(540+36
−29)−i(193+32

−40) ISHIDA 00B pp → π0π0π0

445− i235 HANNAH 99 RVUE π scalar form factor

(523 ± 12)−i(259 ± 7) KAMINSKI 99 RVUE ππ → ππ, K K , σσ

442− i 227 OLLER 99 RVUE ππ → ππ, K K

469− i203 OLLER 99B RVUE ππ → ππ, K K

445− i221 OLLER 99C RVUE ππ → ππ, K K , ηη

(1530+ 90
−250)−i(560 ± 40) ANISOVICH 98B RVUE Compilation

420− i 212 LOCHER 98 RVUE ππ → ππ , K K

440− i245 22 DOBADO 97 RVUE Compilation

(602 ± 26)−i(196 ± 27) 23 ISHIDA 97 ππ → ππ

HTTP://PDG.LBL.GOV Page 1 Created: 7/12/2013 14:50



Roy’s equations and up-down ambiguity in the ππ S0 wave

Re t I(OUT )
` (s) = a0

0 + (2a0
0 − 5a2

0)(s − 4) +
2∑

I′=0

4∑
`′=0

−
∞∫

4m2
π

ds′K̄ II′
``′ (s, s′) Im t I′(IN)

`′ (s′)



Roy’s equations and up-down ambiguity in the ππ S0 wave

Re t I(OUT )
` (s) = a0

0 + (2a0
0 − 5a2

0)(s − 4) +
2∑

I′=0

4∑
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−
∞∫

4m2
π
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`′ (s′)



precision of the Roy and GKPY equations

Roy’ 1971 GKPY’ 2011
two subtractions one subtraction

K II′
``′ (s, s′) ∼ s′−3-fast convergence K II′

``′ (s, s′) ∼ s′−2

ST 0
0 = a0

0 + (2a0
0 − 5a2

0)(s − 4) ST 0
0 = a0

0 + 5a2
0 - no error propagation!
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... for sure your solution is not unique
Another group - "Bern" group:
H. Leytwyller, J. Gasser, G. Colangelo, I. Caprini ...

The Role of the input in Roy’s equations for pi pi scattering" G. Wanders, Eur. Phys. J.
C17 (2000) 323-336

In the abstract:
An updated survey of known results on the dimension of the manifold of solutions is
presented. The solution is unique for a low energy interval with upper end at 800 MeV.
We determine its response to small variations of the input: S-wave scattering lengths
and absorptive parts above 800 MeV.

I.e.:
Fixed two boundary conditions for the ππ amplitude:

• at the threshold (S0 wave scattering length) and
• at 800 MeV



tiny error bands: common target



Bern and Madrid groups finally agreed ...



specific choice of the parameterization?

Madrid: cotδ0
0 =

√
s

2k
M2
π

s− 1
2 z2

0

[
B0 + B1w(s) + B2w(s)2 + B3w(s)3] , w =

√
s−
√

s0−s
√

s+
√

s0−s

Test amplitude: T (s) ∼∏N
i=1 [w(s)− wi ] , w =

√
s−s2+

√
s−s3√

s3−s2

New low energy amplitude (up to ∼ 400− 500 MeV):

Ref I
`(s) =

√
s

4k sin2δI
` = mπk2l [aI

` + bI
`k

2 + cI
`k

4 + d I
`k

6 + O(k8)]

above ∼ 400− 500 MeV - structure of amplitude not changed
repeated fit to the data (not changed) + GKPY equations

300 400 500 600 700 800 900
w  [MeV]

0

50

100

 δ
0 [

de
g]

extended
re-fitted
original

π  +  π  −−>  π  +  π
s-wave



... left cut is enough, we do not need GKPY ...

Left hand cut in parameterizations of
amplitudes:

• additional factor eiα in the full S = e2iδ

matrix element,
• It has, however, nothing to do with

crossing symmetry!

• It does not provide any type of
relationship A(s, t) = Cst A(t , s),

• Moreover, subtracting constant is
not specified so the output
amplitude can be arbitrarily scaled!

• it makes amplitude only more realistic



what forces GKPY eqs to pull up-left the sigma pole?

Re t I(OUT )
` (s) =

2∑
I′=0

CII′ t ′(IN)
0 (4m2

π) +
2∑

I′=0

4∑
`′=0

−
∞∫

4m2
π

ds′K II′
``′ (s, s′) Im t I′(IN)

`′ (s′)

Re t0(OUT )
0 (s) = Re t0(IN)

0 (s)



What does lead to such shape of the KT 00
00 ?

The shape is given by coefficients in the
crossing symmetry matrix Cst and integrated
amplitudes. Is it produced by the integration
along the left or right cut?



what forces GKPY eqs to pull up-left the sigma pole?

Two things: trigonometry and crossing symmetry
algebra lead to narrower and lighter σ.

Nothing more and nothing instead of it is needed.



What it really can be?
JRP printed on May 8, 2014 1
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Fig. 1. (Left) αρ(s) and ασ(s) Regge trajectories, from our constrained Regge-

pole amplitudes. (Right) ασ(s) and αρ(s) in the complex plane. At low and

intermediate energies (thick continuous lines), the trajectory of the σ is similar

to those of Yukawa potentials V (r) = −Ga exp(−r/a)/r [8] (thin dashed lines).

Beyond 2 Gev2 we plot our results as thick discontinuous lines because they should

be considered just as extrapolations.

Furthermore, in Fig. 1 we show the striking similarities between the
f0(500) trajectory and those of Yukawa potentials in non-relativistic scat-
tering [8]. From the Yukawa G=2 curve in that plot, which lies closest to
our result for the f0(500), we can estimate a ≃ 0.5GeV−1, following [8].
This could be compared, for instance, to the S-wave ππ scattering length
≃ 1.6GeV−1. Thus it seems that the range of a Yukawa potential that
would mimic our low energy results is comparable but smaller than the ππ
scattering length in the scalar isoscalar channel. Of course, our results are
most reliable at low energies (thick continuous line) and the extrapolation
should be interpreted cautiously. Nevertheless, our results suggest that the
f0(500) looks more like a low-energy resonance of a short range potential,
e.g. between pions, than a bound state of a confining force between a quark
and an antiquark.

In summary, our formalism and the results for the f0(500) explains why
the lightest scalar meson has to be excluded from the ordinary linear Regge
fits of ordinary mesos.
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Conclusions

• the σ meson is once again alive and is doing well!

• for sure σ is not pure qq̄ meson but perhaps:

• mixture of the qq̄, qqq̄q̄ and gg components,
• something like "correlated two-pion" state?

• opens a promising area for new analyses, especially for the f0(980), f0(1500) ...,

• should help end the debate about the existence of the f0(1370),

• it should help in precise determination of the CKM matrix elements and in the
fight against the isobar model and old habits related with resonances


