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QCD Phase Diagram
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QCD Phase Diagram

» dense baryonic matter
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Hybrid Star ' I Neutron Star

Inner Crust

- heavy ions

- relativistic electron gas
- superfluid neutrons
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- strange quark matter
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Neutron Star Data

» Data situation in general terms is good (masses, tfemperatures, ages, frequencies)
» Ability to explain the data with different models in general is good, too.

... which sounds good, but becomes tiresome if everybody explains everything ...
» For our purpose only a few observables are of real interest

» Most promising: High Massive NS with 2 solar masses (pemorest et al., Nature 467, 1081-1083 (2010))




NS masses and the (QM) Equaftion of State

» NS mass is sensitive
mainly to the sym. EoS

(In particular true for
heavy NS)
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» Problem:
(transition from NM to)
QM is barely understood (applied “universal” 32 Eg (error bars!))
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NS masses and the (QM) Equaftion of State

» NS mass is sensitive
mainly to the sym. EoS
(In particular true for
heavy NS)

»» fraditional: two-phase construction

Folcloric:
QM is soft, hence no
NS with QM core

3

P(n) [MeV fin’]

Fact:
QM is softer, but able
to support QM core in NS

1000 1200 0.2 0.4
Hg [MeV] n(pg) [f1n_3]

Problem:
(fransition from NM to) ) . . o had | ental
QM is barely understood » masquerade propiem: quark an adron eos aimost igentical!
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QCD in dense matter

» LQCD fails in dense (like DENSE) matter (Fermion-sign problem)
» Perturbative QCD fails in non-perturbative domain
DCSB is explicitly not covered by perturbative approach:

9

‘¥ S »? ] . P J ., .
B(p*) =m (1 ~ [‘U ..,] ) lim Ys(p*, mg) =0

T m*

mo—0

» Solution: ‘'some’ non-perturbative approach ‘as close as possible’ to QCD
some = solvable; as close as possible = if possible DCSB, if possible confinement
» State of the art: Nambu-Jona-Lasinio model(s) (+bag models, +hybrids)



NJL type model

Effective Lagrangian
» S: DCSB

» V:renormalizes p

Ling = Gsnp GivsTaACT ) (g " CinsTaAag
» D: diquarks — 2SC, CFL t 2 | ) )

a.b=25.7
» TD Potential minimized 8
i i imat + Gs ) [(a79)" + nv(@i0q)’]
In mean-field approximation S qTaq nv{qivyoq
a—0

» Effective model by its nature;
can be motivated (1g-exchange)

CWESRENR LML NN Thermodynamical potential
be extended (KMT, PNJL)

» possible to describe nucleons; AT = 2 + % + 3 N A2+ A2+ A%
not to be confused with | 8Gs ) 4Gp
confinement! d3p &8
- / (27*}[))3 > [E” +2Tin (1 + e_E"XT)] {iep = 820

n=1



N J L m O d e | S -|- U d y fo r N S (TK, R.Lastowiecki, D.Blaschke, PRD 88, 085001 (2013))

NI

Conclusion: NS may or may not support a significant QM core.
Other interaction channels won't change this if their coupling strengths are not precisely known.




Beyond NJL

» NJL model can be understood as an approximate solution of Dyson-Schwinger equations

quark

gluon
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single particle: quark self energy

Inverse Quark Propagator:
S(p)*=Z,(iyP+iy,(p,+i)+m ) +Z(p; )

T
=lyp revokes Poincaré covariance

Renormalised Self Energy: .

(pi2) =2, ] 9% (0D, (P-4 7, (@40 2(a, Pz
q

Loss of Poincaré covariance increases complexity

— technically and numerically more challenging — no surprise,
though

General Solution:
Vacuum: |u=0 S(p?)*t=iyp A(p?)+B(p?)

Medium: |u#0| S(p? p,)t=17P A(p% P, 1) +iy,(P, +it) C(p% P,y 1) +B(P% P,y 1)

Similar structured equations in vacuum and medium, but in medium:
1. one more gap

2. gaps are complex valued

3. gaps depend on (4-)momentum, energy and chemical potential




Effective gluon propagator

S(p;p)t=2Z,(iyp+iy,(p,+ig)+m, )+Z(p; )

a

(pi2) =2, ] 9% (0D, (P-4 7, (@40 2(a,Piz)
q

Ansaftz for self energy (rainbow approximation, effective gluon propagator(s))
A : QEDﬁtif(p_Q)§';£ a)I';(g.p) / G((p—a)*) Dye(p —q)gﬁr;ﬁ(qjgw
Specify behaviourG(k?)

G(k?) 4

fm T

= 8mDa(k) + AT D2k 4 gz (k)
w? %hl |:T + (1 + Jile,r"ai"'ia{:jﬂ)
Infrared strength running coupling for large k

(zero width + finite width contribution)

Results at finite densities obtained for
st term (Munczek/Nemirowsky (1983)) — Klahn et al. (2010)
2nd term | — Chen et al.(2008,2011)

NJL model: ¢°D,.(p—q) = Wa*’“ delta function in configuration(!) space
G




NJL model within DS framework

B(p) = m+ 16 / d'q B(q)
PP T 3wy, | @n) EA(g) + BO%q) + BAq)” . .
A o To satisfy these equations
oy _ 2, 8 d'q PgA(q) :
PrA(p) = P+ 5 — 153 =5 S all gap solutions have to be
3mg, ) (2m)* A%(q) + qiC?*(q) + B*(q)

| 4 momentum independent.
7°C(p) = P2+ 8 / d'q P1qsC(q) Simplest solution: A=1
PP 3m% | (2m)* P A%q) + ¢iC%*(q) + B%(q)

] dq 3.C(q) - P2C = PP+ ip K Renormalization of
33 BT 2+ 2C2(q) + Bq) — K chem. pot. due o
me i 1 = pC = ps+i(p+ K)  vectorinteraction
B = m+ 16 d'q b mass gap equation

3m2, | (2m)* @ + ¢ + B?

Thisis a 1 to 1 reproduction of the (basic) NJL model
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NJL model within DS framework

- : 1
P[S] = TrIn[S7'] — ETr[ZS] Steepest descent approximation
d4 L X 3 .. 3 . . . .
P(u) = : Trin S~ YF2 ps) + —mZK? — Zm2B? 1 to 1 NJL (regularization issue ignored)
‘ 2m)4 1 8

] dq 3.C(q) P2C = PP+ ip K Renormalization of
3 .2/ oy ﬁgcj‘z oy = iK chem. pot. due to
me, J (2m)" ¢ + qiC%(q) + B*(q) = puC = py+i(p+ K) vector inferaction
B = m+ 16 d'q b mass gap equation
3m2, | (2m)* @ + ¢ + B?

Thisis a 1 to 1 reproduction of the (basic) NJL model



Model 1 (I\{}_unczek/Nemirowsky)

- 1 . i A
fllplipn) = = f dpa trp(—va ) S (p:pe) [ P(u<m)=PR, + [du' n(u') oc P, + const x z.°
Al . 0
Wigner Phase P2 = u? —2n° 10"%
1.0 < :
- H“*,\
o8 :__ ___---"'--.__H -HHHH\ ) ., - -ﬂ-.",.__ ‘--""._ —
[ ~ >N NN N =
os T ) H“hﬁ 1‘-.___‘ \ E—
: — m- ™, --"\.\,_l-I A ) .'.I ! \ = 5
o4 '-___H H ;:g 10° i
[ 2 4 Voo 2ee I
T | | y 2 2
Vo | P .
1] 1.0 1 2l 2
P 0 p) 1 6 g
wn
1> = 2177 to obtain f,(p*> =0) =1 modelis scale invariant regarding p/n

P (u) < x° well satisfied up to u/n =1
(7 =1.09 GeV)
;small' chem. Potential: f,(P? =0, < 17) oc 2 [n (Le<mn) =

2N_N _ _
Tzfjdsp f1(|p|) oc g ]

T. Klahn, C.D. Roberts, L. Chang, H. Chen, Y.-X. Liu PRC 82, 035801 (2010)



Model 2

1 .
dpa trp(—-a)S(p: )

— =T

Ffllpls ) = I

Wigner Phase Less extreme, but again, 1particle number density distribution
different from free Fermi gas distribution
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Conclusions

NJL model is a powerful tool 1o explore possible features of dense QCD
It possibly might be a too powerful tool for unambiguous predictions

NJL mf approximation is a gluon mf approximation in DSE
which causes the known regularisation issues that could be avoided

Accounting for momentum dependent gap solutions enriches
the model space significantly — DSE successful in vacuum (hadron properties)

NB: Momentum independent gap solutions in their very nature
result in a quasi particle picture — no confinement



